Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: Role of M1muscarinic receptors
نویسندگان
چکیده
منابع مشابه
Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine.
DYT1 dystonia is a severe form of inherited dystonia, characterized by involuntary twisting movements and abnormal postures. It is linked to a deletion in the dyt1 gene, resulting in a mutated form of the protein torsinA. The penetrance for dystonia is incomplete, but both clinically affected and non-manifesting carriers of the DYT1 mutation exhibit impaired motor learning and evidence of alter...
متن کاملPre-Synaptic Release Deficits in a DYT1 Dystonia Mouse Model
DYT1 early-onset generalized torsion dystonia (DYT1 dystonia) is an inherited movement disorder caused by mutations in one allele of DYT1 (TOR1A), coding for torsinA. The most common mutation is a trinucleotide deletion (ΔGAG), which causes a deletion of a glutamic acid residue (ΔE) in the C-terminal region of torsinA. Although recent studies using cultured cells suggest that torsinA contribute...
متن کاملP7: The Role of Aquaporins in Synaptic Plasticity and Epilepsy
لطفاً به چکیده انگلیسی مراجعه شود.
متن کاملThe Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review
Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...
متن کاملA role for cerebellum in the hereditary dystonia DYT1
DYT1 is a debilitating movement disorder caused by loss-of-function mutations in torsinA. How these mutations cause dystonia remains unknown. Mouse models which have embryonically targeted torsinA have failed to recapitulate the dystonia seen in patients, possibly due to differential developmental compensation between rodents and humans. To address this issue, torsinA was acutely knocked down i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Movement Disorders
سال: 2014
ISSN: 0885-3185
DOI: 10.1002/mds.26009